Averaging Principle for a Class of Time-Fractal-Fractional Stochastic Differential Equations
نویسندگان
چکیده
In this paper, we study a class of time-fractal-fractional stochastic differential equations with the fractal–fractional operator Atangana under meaning Caputo and kernel power law type. We first establish Hölder continuity solution equation. Then, certain averaging conditions, show that solutions original can be approximated by associated averaged in sense mean square convergence. As an application, provide example numerical simulations to explore established principle.
منابع مشابه
Averaging principle for a class of stochastic reaction–diffusion equations
We consider the averaging principle for stochastic reaction–diffusion equations. Under some assumptions providing existence of a unique invariant measure of the fast motion with the frozen slow component, we calculate limiting slow motion. The study of solvability of Kolmogorov equations in Hilbert spaces and the analysis of regularity properties of solutions, allow to generalize the classical ...
متن کاملSubordination Principle for a Class of Fractional Order Differential Equations
The fractional order differential equation u′(t) = Au(t) + γD t Au(t) + f(t), t > 0, u(0) = a ∈ X is studied, whereA is an operator generating a strongly continuous one-parameter semigroup on a Banach space X , D t is the Riemann–Liouville fractional derivative of order α ∈ (0, 1), γ > 0 and f is an X-valued function. Equations of this type appear in the modeling of unidirectional viscoelastic ...
متن کاملComputational Method for Fractional-Order Stochastic Delay Differential Equations
Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...
متن کاملApplications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations
In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...
متن کاملAveraging Principle for Differential Equations with Hysteresis
The goal of this paper is to extend the averaging technique to new classes of hysteresis operators and oscillating functions as well as to bring more consistency into the exposition. In the first part of the paper, making accent on polyhedral vector sweeping processes, we keep in mind possible applications to the queueing theory where these processes arise naturally. In the second part we conce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fractal and fractional
سال: 2022
ISSN: ['2504-3110']
DOI: https://doi.org/10.3390/fractalfract6100558